Homework 2 Solution: Project Independence

AAE 526: Quantitative Methods
Fall Semester, 2019

rutherford@aae.wisc.edu

Due 11 October, 2019

Project Independence for Energy Security (PIES) was an initiative announced by U.S. President Richard Nixon
on November 7, 1973, in reaction to the OPEC oil embargo and the resulting 1973 oil crisis. Recalling the Manhat-
tan Project, the stated goal of Project Independence was to achieve energy self-sufficiency for the United States
by 1980 through a national commitment to energy conservation and development of alternative sources of en-
ergy. Nixon declared that American science, technology and industry could free America from dependence on
imported oil (energy independence).

For this homework we implement a stylized PIES model in GAMS and attempt to reproduce results from
the paper, “Energy Policy Models for Project Independence” by William Hogan in Computers and Operations
Research Vol 2, pp 251-271, 1975.

i. Formulate the prototype PIES model as a quadratic program in GAMS which can produce two equilibria,
one without constraints associated with capital or steel and another which accounts for these constraints.

ii. Reformulate your PIES model as a linear complementarity program in GAMS and demonstrate that you ob-
tain the same results as in the quadratic program.

iii. Compare your results with those presented in Tables 8 and 9 of Hogan’s paper. Can you explain the dis-
crepency?

[fe¢]

ol 75

region |
Refer to Consumption
Table | region |

Coal o & et Refer to

region 2 table 7

Consumption!
region 2
100,
209 Refinery |2
Qil 00 i
f region!

Refer 1o
table 3 4- 00, (5

oil 2 Refinery

region 2 2

R
Refer to
table 5

Fig. Al. Example energy system network.

We begin by choosing notation for sets and parameters. We use the following symbols to represent model
dimensions.

set j Consumption regoins /j1, j2/
i Coal regions /i1, i2/
k 0il regions /k1, k2/
r Refineries /rl, r2/
[Supply increments for coal regions /L, M, H/,
o Supply increments for oil regoins /L, H/,
P Energy products /Coal, Light, Heavy/,

g(p) Grades of refined oil / Light, Heavy/,

res Resources /steel, newcap/;

alias (p,pp,ip,jp);

Next we initialize parameters as data tables from the stylized PIES model described in Hogan’s paper:

table tablel(i,c,*) Resource requirements for production levels (p 257)

* cap Production capacity (tons per day)
* cO Minimum price / ton ($)
* newcap New capital / ton
* steel Steel / ton
cap cO newcap steel
il.L 300 5 1 1
i1l.M 300 6 5 2
il.H 400 8 10 3
i2.L 200 4 1 1
i2.M 300 5 5 4
i2.H 600 7 6 5;

table table2(i,j) Transport costs ($ per ton)

i1 j2
i1 1.00 2.50
i2 0.75 2.75;

table table3(k,o0,*) 0il resource requirements

cap cO newcap steel
k1.L 1100 1 0 0
k1.H 1200 1.5 10 4
k2.L 1300 1.25 0 0
k2.H 1100 1.50 15 2;

3

table table4(k,r) 0il transport costs ($ per barrel)

rl r2
k1 2 3
k2 4 2;
table table5(*,r) Refinery yields and cost
rl r2
Light 0.6 0.5
Heavy 0.4 0.5
cost 6.5 5.0;

table table6(r,j) Transport costs for refined products ($ per barrel)

j1 j2
ri 1 1.2
r2 1 1.5;

table table7(p,*) Elasticities of final demand

RefP RefQ Light Heavy Coal

Light 16 1200 -0.5 0.2 0.1
Heavy 12 1000 0.1 -0.5 0.2
Coal 12 1000 0.1 0.2 -0.75;

table table8(p,j) Demand without K or S constraints

j1 j2
light 1252 1266
heavy 1041 1055
coal 1102 998 ;

table table9(p,j) Demand with K or S constraints

j1 32
light 1205 1229
heavy 996 1020
coal 996 910 H
The Demand System

The demand function provided in Table 7 describes an asymmetric demand function of the form:
Di(p)=q; +Z<Tij (pj—py)
J

in which p and g correspond to the RefP and Ref(Q columns in Table 7, and the asymmetric Slutsky matrix, o,
is computed on the basis of the demand elasticity matrix €;; given in Table 7:
G
Oij=€ij—-
bj
In quadratic programming formulation we need an integrable demand function. In this case, we use Slutsky

matrix S, a symmetric version of o':
_ aij + Uji
A
The calculation of o, S and S! is peformed in the following GAMS code:

parameter pref (p) Reference price,
qref (p) Reference demand;

pref(p) = table7(p,"refp");
qref(p) = table7(p,"refq");

parameter sigma(p,pp) Asymmetric slutsky matrix used for the AS model
slutsky (p,pp) Symmetric slutsky matrix used for CP model;

* Asymmetric demand system:
sigma(p,pp) = table7(p,pp)*qref (p)/pref (pp);
* Related symmetric demand system:

slutsky(p,pp) = 0.5*(sigma(p,pp)+sigma(pp,p));

* Calculate the inverse demand coefficients:

variable SLUTSKYINV(p,p) Inverse matrix for SLUTSKY;

equation invdef;

invdef (ip, jp) .. sum(p, SLUTSKYINV(ip,p)*slutsky(p,jp)) =e= 1$sameas(ip,jp);

model invert /invdef/;
solve invert using mcp;

Representation of the Network

It is helpful to initially approach the model formulation from a linear programming perspective, taking final de-
mand as given. This permits us to see that we have the network logic in place without having to worry about
the representation of demand functions through the quadratic form in the objective function. In the LP model
we simply minimize the cost of meeting demand as reported in table8. The equations incorporate parameters
which are not employed in the LP solution but which are required subsequently. These include a demand ad-
justment term (delta) and resource supply constraints (rs). We use the resource supply parameter to control
whether the resource constraint enters the model. When rs (res) =0, the constraint for resource res is omitted.
The demand function associated with the symmetric Slutsky matrix is:

Di(p)=§; +Zsij (pi—5;)
i
and the inverse demand function associated with the symmetric Slutsky matrix is:
Pq)=pi+ Y S} a;-)
J

Asymmetric demand may then be written as:
Di(p)=Di(p)+ 4,

We A, is assigned to the difference between D;(p) and D;(p), the symmetric model lines up with the asymmetric
model. Below we use this observation to implement a diagonalization strategy for solving the market equilibrium
model with asymmetric demand through a sequence of quadratic programming problems.

parameter delta(p,j) Demand adjustment (off-diagonal terms),
rs(res) Resource supply,
resutil Resource utilization,
report Pivot report data,
op Flag for the diagonal own-price demand model (QP or MCP) /1/
cp Flag for symmetric cross-price demand model (QP or MCP) /0/
as Flag for the asymmetric cross-price demand model (MCP) /0/;

rs(res) = 0;
delta(p,j) = 0;

NONNEGATIVE
VARIABLES
Qc(i,c) Quantity of coal extracted by region i at cost level c,
Q0(k,0) Quantity of oil resources extracted -- region k at cost level o
QR(r) Quantity of oil refined -- refinery r,
D(p,j) Demand -- energy product p in consumption region j,
XC(i,j) Quantity of coal transported from region i to market j
Xo0(k,r) Quantity of oil resources shipped from region k to refinery r
XR(r,g,j) Quantity of oil grade g transported from refinery r to market j;

variable COST Total cost;
equations oilresource, crudeoil, refinedoil, coalsupply, demand, costdef, resource;
* 0il supply from region (k) by cost increment (o) equals oil shipments to refineries (r):

oilresource(k).. sum(o, QO(k,0)) =g= sum(r, X0(k,r));

* 0il supply from regions (k) equals refinery (r) output:
crudeoil(r).. sum(k, X0(k,r)) =g= QR(r);
* Refined oil supply equals refined oil shipments:

refinedoil(r,g).. QR(r)*table5(g,r) =g= sum(j, XR(r,g,j));
* Coal supply equals coal demand:
coalsupply(i).. sum(c, QC(i,c)) =g= sum(j, XC(i,j));
demand (j,p) .. sum((r,g(p)), XR(r,g,j)) + sum(i, XC(i,j))$sameas(p,"coal") =g= D(p,j) + delta(p,j);
resource(res)$rs(res).. rs(res) =g= sum((i,c), tablel(i,c,res)*QC(i,c)) +
sum((k,0), table3(k,o,res)*Q0(k,0));

costdef.. COST =e= sum((r,g,j), XR(r,g,j)*table6(r,j)) +

sum((k,r), X0(k,r)*table4(k,r)) +

sum((i,j), XC(i,j)*table2(i,j)) +

sum((k,0), Q0(k,o0)*table3(k,0,"c0")) +
sum((i,c), QC(i,c)*tablel(i,c,"c0")) +

sum(r, QR(r)*table5("cost",r));
* Upper bounds on coal and oil production:

QC.UP(i,c) = tablel(i,c,"cap");
Q0.UP(k,0) = table3(k,0,"cap");

* Solve the model as a linear program with fixed product demand
* in each market and no resource constraints:

D.FX(p,j) = table8(p,j);

model pies_lp /all/;
solve pies_lp using LP minimizing COST;

report("price",p,j,"LP") = demand.m(j,p);

report("quantity",p,j,"LP") = D.1(p,j);

resutil(res,"LP") = sum((i,c), tablel(i,c,res)*QC.L(i,c)) +
sum((k,o0), table3(k,o,res)*Q0.L(k,0));

report("price",p,j,"LP") = demand.m(j,p);
report("quantity",p,j,"LP") = D.1(p,j);

Two Integrable Demand Models

The next step in the computations is to add the quadratic term representing consumer surplus to the object
function. This code includes two alternative demand functions, one based on the symmetric demand system
with own- and cross-price effects (the cross-price model, cp), the other based on a diagonal demand function in

which cross-price effects are assumed to be zero (the own-price model, op).

$macro CS_op(p,j) (D(p,j)*(pref(p) + 1/sigma(p,p) * (D(p,j)/2-qref(p))))

$macro CS_cp(p,j) (D(p,j)*(pref(p) + sum(pp, slutskyinv.L(p,pp) * (D(pp,j)/2-qref(pp)))))
variable NSS Negative of social surplus;

equation nssdef;

nssdef.. NSS =e= COST - sum((p,j), CS_op(p,j)$op + CS_cp(p,j)$cp);

model pies_qcp /all/;

* Solve the model with own-price demand function, ignoring
* cross-price effects:

op = yes;

cp = no;

as = no;

delta(p,j) = 0;

D.UP(p,j) = +inf;

D.LO(p,j) 0;

rs(res) = 0;

solve pies_qcp using QCP minimizing NSS;

resutil(res,"op") = sum((i,c), tablel(i,c,res)*QC.L(i,c)) +
sum((k,o0), table3(k,o,res)*Q0.L(k,0));

report("price",p,j,"op") = demand.m(j,p);

report("quantity",p,j,"op") = D.1(p,j);

* Solve the market equilibrium with symmetric cross-price demand:
op = no;
cp = yes;
as = no;

delta(p,j) = 0;

D.UP(p,j) = +inf;

D.LO(p,j) = O;

rs(res) = 0;

solve pies_qcp using QCP minimizing NSS;

resutil(res,"cp") = sum((i,c), tablel(i,c,res)*QC.L(i,c)) +
sum((k,0), table3(k,o,res)*Q0.L(k,0));

report ("price",p,j,"cp") = demand.m(j,p);

report ("quantity",p,j,"cp") = D.1(p,j);

The Complementarity Model

As a cross check on the consumer surplus calculation we formulate the model as a complementarity problem.
The complementarity problem shares the primal constraints with the optimization problem. In addition, it in-
cludes arbitrage conditions — dual feasibility constraints from the linear programming model and it incorporates
an explicit primal demand function. Three alternative demand functions are included in the model. D_op de-
fines the own-price (diagonal) demand in which the demand for product p depends only on the price of product
p. D_cp defines the symmetric cross-price demand function in which the demand for product p depends on the
prices of all goods as defined by parameter slutsky(p,pp). Finally, D_as defines the asymmetric cross-price
demand function as defined by sigma(p,pp).

In a complementarity problem equations are associated with variables, and complementary slackness condi-
tions require that when a variable is off its bounds, the corresponding equation is binding. The equation-variable

associations are defined in the model pies_mcp statement.

NONNEGATIVE VARIABLES

P_0(k) Supply price of oil,
P_X0(r) Delivered price of oil,
P_R(r,g) Price of refinery outputs,
P_C(i) Supply price of coal,
P_D(j,p) Demand price of all products (oil and coal)
PR(res) Resource price;
equations
prf_QC(i,c) Quantity of coal extracted by region i at cost level c,
prf_Q0(k,o0) Quantity of oil resources extracted -- region k at cost level o
prf_QR(r) Quantity of oil refined -- refinery r,
def_D(p,j) Demand -- energy product p in consumption region j,
prf_XR(r,g,j) Quantity of oil transported from refinery r to market j
prf_XC(i,j) Quantity of coal transported from region i to market j
prf_X0(k,r) Quantity of oil resources shipped from region k to refinery r
coalprice(j,p) Coal price constraint;
prf_QC(i,c).. tablel(i,c,"c0") + sum(res,PR(res)*tablel(i,c,res)) =e= P_C(i);
prf_QO(k,o).. table3(k,0,"c0") + sum(res,PR(res)*table3(k,o,res)) =e= P_0(k) ;
prf_QR(z).. P_X0(r) + table5("cost",r) =g= sum(g,P_R(r,g)*table5(g,r));
prf_XR(r,g,j).. P_R(r,g) + table6(r,j) =g= P_D(j,g);
prf_XC(i,j).. P_C(i) + table2(i,j) =G= P_D(j,"coal");
prf_X0(k,r).. P_0(k) + tabled4(k,r) =G= P_X0(r);
* Define the own-price demand function:

$macro D_op(p,j,price) (gref(p) + slutsky(p,p)*(price(j,p)-pref(p)))
* Define the symmetric cross-price demand function:
$macro D_cp(p,j,price) (qref(p) + sum(pp, slutsky(p,pp)*(price(j,pp)-pref(pp))))
* Define the asymmetric cross-price demand function:
$macro D_as(p,j,price) (qref(p) + sum(pp, sigma(p,pp)*(price(j,pp)-pref(pp))))
def _D(p,j).. D(p,j) =e= D_op(p,j,P_D)$op + D_cp(p,j,P_D)$cp + D_as(p,j,P_D)$as;
model pies_mcp /

oilresource.P_0, crudeoil.P_X0, refinedoil.P_R, coalsupply.P_C, demand.P_D,

prf_QC.QC, prf_Q0.Q0, prf_QR.QR, def_D.D, prf_XR.XR, prf_XC.XC, prf_X0.X0,
resource.PR /;

After the complementarity problem is defined, it can be used to verify that the equilibrium found through so-
cial surplus optimization solves the corresponding MCP model. We do this check both for the own-price demand
system (op = yes) and for the symmetric cross-price model (cp = yes).

op = yes;
Ccp = no;
as = no;

delta(p,j) = 0;
solve pies_qcp using QCP minimizing NSS;

PR.FX(res) = 0;

P_0.L(k) = oilresource.M(k);
P_X0.L(r) = crudeoil.M(r);
P_R.L(r,g) = refinedoil.M(r,g);
P_C.L(i) = coalsupply.m(i);
P_D.L(j,p) = demand.M(j,p);

pies_mcp.iterlim = 0;
solve pies_mcp using mcp;
abort$round(pies_mcp.objval) "MCP fails to replicate the QP model (own-price demand)";

op = no;
cp = yes;
as = no;

delta(p,j) = 0;

solve pies_qcp using QCP minimizing NSS;
PR.FX(res) = 0;

P_0.L(k) = oilresource.M(k);

P_X0.L(r) = crudeoil.M(r);

P_R.L(r,g) = refinedoil.M(r,g);

P_C.L(i) = coalsupply.m(i);

P_D.L(j,p) = demand.M(j,p);
pies_mcp.iterlim = 0;

solve pies_mcp using mcp;
abort$round(pies_mcp.objval) "MCP fails to replicate the QP model (cross-price demand)";

Diagonalization
A diagonalization algorithm involves solving a nonlinear system of equations of the form:
x = f(x)
throgh iterative assignment for iterations k =1,2,...
L= Fxb)
We can use diagonalization to find A through the iterations:

i. Compute prices through solution of the quadratic program, implicitly compute p**! = f(AF)

ii. Re-compute the demand function perturbation, i.e. A¥*! = D(p*+1)—D(p*+!)
iii. Stop when 6F = ||A¥*! — AF|| is smaller than a given tolerance 7

The following GAMS codes implements this diagonalization algorithm using the own-price demand system:

set iter Iterations for demand adjustments /iterO*iteri10/;

parameter iterlog Iteration log for iterative demand adjustments,
qd(p,j) Exact demand at current prices,
dev Maximum deviation /1/;

op = yes;

cp = no;

as = no;

dev = 1;

loop(iter$round(dev,4),
iterlog(iter,p) = sum(j, sqr(delta(p,j) - (D_as(p,j,demand.M) - D.L(p,j))));

iterlog(iter,j) = sum(p, sqr(delta(p,j) - (D_as(p,j,demand.M) - D.L(p,j))));
delta(p,j) = D_as(p,j,demand.M) - D.L(p,j);
solve pies_qcp using QCP minimizing NSS;
dev = sum(p,iterlog(iter,p)) + sum(j,iterlog(iter,j));
)3

display "Iteration log with diagonal (own-price) demand system:", iterlog;

-——- 392 Iteration log with diagonal (own-price) demand system:

-——- 392 PARAMETER iterlog Iteration log for iterative demand adjustments

j1 j2 Coal Light Heavy
iter0 1496.372 1080.593 86.203 1331.809 1158.953
iterl 7202.339 2822.173 3632.534 199.765 6192.213
iter2 1674.564 1570.186 930.695 2027.999 286.056
iter3 316.545 301.256 204.064 169.929 243.808
iterd 29.783 28.784 9.871 30.839 17.857
iterb 0.442 0.464 0.005 0.146 0.755
iter6 0.017 0.018 0.009 0.022 0.004
iter7 0.002 0.002 9.588287E-4 0.002 0.001

iter8 2.883785E-4 2.908058E-4 1.426338E-4 2.506698E-4 1.858807E-4
iter9 4.106105E-5 4.142413E-5 2.025582E-5 3.508095E-5 2.714841E-5
iter10 5.871390E-6 5.922886E-6 2.897648E-6 5.030134E-6 3.866495E-6

The symmetric cross-price model defined by slutsky is a closer approximation to the asymmetric cross-
price model defined by sigma, and when this model is used, convergence of the diagonalization algorithm is
considerably quicker:

iterlog(iter,p) = 0;
iterlog(iter,j) 0;
delta(p,j) = 0;

op = no;
cp = yes;
as = no;
dev = 1;

loop(iter$round(dev,4),
iterlog(iter,p) = sum(j, sqr(delta(p,j) - (D_as(p,j,demand.M) - D.L(p,j))));
iterlog(iter,j) = sum(p, sqr(delta(p,j) - (D_as(p,j,demand.M) - D.L(p,j))));
delta(p,j) = D_as(p,j,demand.M) - D.L(p,j);
solve pies_qcp using QCP minimizing NSS;
dev = sum(p,iterlog(iter,p)) + sum(j,iterlog(iter,j));

N

display "Iteration log with symmetric cross-price demand system:", iterlog;

-——- 417 Iteration log with symmetric cross-price demand system:

- 417 PARAMETER iterlog Iteration log for iterative demand adjustments
j1 j2 Coal Light Heavy

iter0 18398.117 9330.138 9726.247 11242.314 6759.693

iterl 19386.580 10155.725 11656.915 4433.775 13451.615

iter2 37.187 37.750 0.931 61.491 12.515

iter3 0.051 0.034 0.003 0.044 0.038
iter4 8.421629E-6 5.469478E-6 1.634557E-7 1.153012E-5 2.197526E-6

We verify that the equilibrium returned through diagonalization solves the corresponding complementarity
model based on the asymmetric demand model.

op = no;
cp = no;
as = yes;

D.L(p,j) = D_as(p,j,demand.M);
delta(p,j) = 0;

PR.FX(res) = 0;

P_0.L(k) = oilresource.M(k);
P_X0.L(r) = crudeoil.M(x);
P_R.L(r,g) = refinedoil.M(r,g);
P_C.L(i) = coalsupply.m(i);
P_D.L(j,p) = demand.M(j,p);

pies_mcp.iterlim = 0;

solve pies_mcp using mcp;
abort$round(pies_mcp.objval) "MCP fails to replicate asymmetric equilibrium.";

Resource Constraints on Steel and New Capital

Finally, we install constraints on steel and new capital through assignment of parameter rs (res) and solve the
model through diagonalization.

rs("steel") = 12000;
rs("newcap") = 35000;

op = yes;
cp = no;
as = no;
delta(p,j) = 0;

solve pies_qcp using QCP minimizing NSS;

resutil(res,"con_op") = sum((i,c), tablel(i,c,res)*QC.L(i,c)) +
sum((k,o0), table3(k,o,res)*Q0.L(k,0));

report ("price",p,j,"con_op") = demand.m(j,p);

report ("quantity",p,j,"con_op") = D.1(p,j);

op = no;
cp = yes;
as = no;
delta(p,j) = 0;

solve pies_qcp using QCP minimizing NSS;

resutil(res,"con_cp") = sum((i,c), tablel(i,c,res)*QC.L(i,c)) +
sum((k,o0), table3(k,o,res)*Q0.L(k,0));

report ("price",p,j,"con_cp") = demand.m(j,p);

report ("quantity",p,j,"con_cp") = D.1(p,j);

* Solve the QP model iteratively with cross-price elasticities of demand:
op = no;
cp = yes;
as = no;
dev = 1;

iterlog(iter,p) = 0;
iterlog(iter,j) 0;

loop(iter$round(dev,4),

10

iterlog(iter,p) = sum(j, sqr(delta(p,j) - (D_as(p,j,demand.M) - D.L(p,j))));
iterlog(iter,j) = sum(p, sqr(delta(p,j) - (D_as(p,j,demand.M) - D.L(p,j))));
delta(p,j) = D_as(p,j,demand.M) - D.L(p,j);

solve pies_qcp using QCP minimizing NSS;

dev = sum(p,iterlog(iter,p)) + sum(j,iterlog(iter,j));

);

display "Iteration log with resource constraints:", iterlog;

resutil(res,"iter_con") = sum((i,c), tablel(i,c,res)*QC.L(i,c)) +
sum((k,o0), table3(k,o,res)*Q0.L(k,0));
report ("price",p,j,"iter_con") = demand.m(j,p);
report("quantity",p,j,"iter_con") = D.1(p,j) + delta(p,j);
report("delta%",p,j,"iter_con") = 100 * delta(p,j) /(D.1(p,j) + delta(p,j));

* Verify consistency with the MCP model:
op = no;
cp = no;
as = yes;
D.L(p,]j)

= D_as(p,j,demand.M) ;
delta(p,j) = 0;

PR.UP(res) = +inf;

PR.L(res) = resource.M(res);
P_0.L(k) = oilresource.M(k);
P_X0.L(r) = crudeoil.M(x);
P_R.L(r,g) = refinedoil.M(r,g);
P_C.L(i) = coalsupply.m(i);
P_D.L(j,p) = demand.M(j,p);

pies_mcp.iterlim = 0;
solve pies_mcp using mcp;

abort$round(pies_mcp.objval) "MCP fails to replicate constrained equilibrium.";

option resutil:1;
display resutil;

option report:2:2:1;
display report;

Replication of Hogan’s Results

The equilibrium demand quantities do not agree with the values reported by Hogan in Tables 8 and 9.

-——— 528 PARAMETER resutil Resource utilization

LP op cp iter_op iter_cp con_op con_cp iter_con
steel 13156.0 13500.0 13286.2 13327.7 13327.7 12000.0 12000.0 12000.0
newcap 38740.0 39600.0 39065.6 39169.3 39169.3 35000.0 35000.0 35000.0

-——- 531 PARAMETER report Pivot report data

INDEX 1 = price

LP op cp iter_op iter_cp con_op con_cp iter_con
Coal .j1 9.00 10.40 9.03 9.20 9.20 11.52 11.60 11.64
Coal .j2 10.50 12.00 10.78 10.97 10.97 13.52 13.60 13.64
Light.j1 12.40 13.71 12.40 11.98 11.98 15.63 15.70 15.75
Light.j2 12.60 13.94 12.60 12.32 12.32 15.83 15.90 15.95

11

Heavy.
Heavy.j

INDEX

Coal .j
Coal .j
Light.j
Light.j
Heavy.j
Heavy.j

INDEX

Coal
Coal

Light.
Light.
Heavy.
Heavy.

j1 8.60
j2 9.10
1 = quantity
LP
j1 1102.00
j2 998.00
j1 1252.00
j2 1266.00
j1 1041.00
j2 1055.00
1 = deltaj
iter_op
.j1 -6.80
.j2 -6.43
j1 -6.93
j2 -4.68
j1 -6.82
j2 -3.78

10.10
10.60

op

1100.00
1000.00
1285.77
1277.07
1078.99
1058.16

iter_cp

0.69
0.69
-2.04
-1.48
2.63
2.38

1100.
1000.
1266.
1279.
1044.
10565.

.60

iter_con

0.

05

9.377400E-3

-0.
0.
0.
0.

14
45
17
03

iter_op

1100
1000
1263
1278
1052
1063

12

.00
.00
.30
.20
.34
.09

iter

1100
1000
1263
1278

1052.

1063

_cp

.00
.00
.30
.20
34
.09

11.67
12.17

con_op

1030.16
905.16
1213.92
1206.42
1013.55
992.71

11.80
12.30

con_cp

1019.33
904.29
1205.44
1220.75
997.76
1012.89

11.
12.

85
35

iter_con

1018.
902.
1202.
1225.
998.
1012.

11
69
55
05
97
72

