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A Logit technology for

general equilibrium analysis

BY EDWARD J. BALISTRERIa, FLORIAN LANDISb , AND THOMAS F. RUTHERFORDc

Abstract: We propose a new Logit-based cost function as a foundation for the tech-
nology assumed in economic analysis. The technology departs from other Logit
applications in that it does not require an outside good. This makes it internally
consistent in general-equilibrium applications. In its non-separable nested form
the proposed technology is shown to be flexible in calibration to any consistent lo-
cal observation of the Slutsky matrix, and it remains convex globally on the open
price simplex. The technology is “regular flexible.” We demonstrate the technol-
ogy in the context of the context of radical reduction in fossil energy use. The im-
plied costs under the GE-Logit technology are compared with the widely adopted
constant-elasticity-of-substitution (CES) technology calibrated to an identical lo-
cal benchmark.
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1. Introduction

Standard constant-elasticity-of-substitution (CES) based technologies are regular,
but impose severe restrictions on observable local cross-price responses. Perroni and
Rutherford (1995) propose extending the CES structure to include nonseparabilities
across nests. The resulting Nonseparable Nested CES (NNCES) functional form is flex-
ible to any consistent local observation of price responses and maintains regularity
globally. Further, Perroni and Rutherford (1998) show that other proposed flexible func-
tional forms can be problematic for global inference because they quickly lose regular-
ity away from the local point of observation. Having the NNCES form is useful, but the
lack of alternatives might restrict the range of empirical inference.

In this paper we propose a new unit cost function that might be used as a build-
ing block for an alternative regular-flexible technology. The cost function is based on
the multinomial logit model. This formulation departs from other logit applications
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in that the only payments are to inputs at market prices, with the associated random
input costs internalized as an aggregate productivity adjustments. Thus, no outside-
good (money) payments are needed to cover the random-cost component critical to
input choice. This makes the technology internally consistent in general-equilibrium
application. In its non-separable nested form the proposed technology is shown to be
flexible in calibration to any consistent local observation of the Slutsky matrix, and it
remains convex globally on the open price simplex. The technology is regular flexible
as defined by Perroni and Rutherford (1995), and is therefore a viable candidate as an
alternative to the NNCES technology.

We offer a demonstration of our proposed technology in the context of the Net-Zero
challenge, which postulates a radical reduction in fossil energy use. We formulate a
transparent general equilibrium with output produced by two primary inputs, capi-
tal and labor, and a third intermediate input, fossil energy. The model is calibrated to
observed input shares. In an exercise similar to Hogan and Mann (1977) we illustrate
that beliefs about the local elasticities are critical in assessing the costs associated with
significant fossil-energy reductions. We add a systematic comparison of the new Logit
based technology with the CES standard. We conclude that regularity restricts the range
of outcomes on a sizable “inner domain,” but globally the GE Logit model departs from
the CES model.

2. Theory

The Canonical Logit Model

A production process involves numerous tasks. Any task can be completed with
any two or more factors of production. When the manager assigns factor i to a task she
realizes unit cost:

ci = αi +µε̃

where αi is the composite cost associated with factor i (the same for all tasks), µ is a
positive constant, and ε̃ is a gumbel distributed random variable with mean γ and vari-

ace π
2

6 variance. Variations in ε̃ reflect heterogeneity of the productivity of factors. Each
factor has the same random variation in cost for all tasks. Despite random variations
in factor cost there is no explicit uncertainty in factor choice. That is, the cost of doing
any task k with factor i is known before the factor assignments are made. Given

ci k = αi +µεi k ,

the least cost production plan assigns factors of production to tasks, and it can be for-
mulated as a trivial linear programming problem:

min
1

n

n
∑

k=1

�

m
∑

i=1

ci k xi k

�

(1)
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subject to

∑

i

xi k = 1 ∀k = {1, . . . , n}

xi k ≥ 0

where m denotes the number of factors of production and n is the number of tasks
involved in the production process (in this discrete approximation1).

The least cost factor is assigned to each task. The ex-ante probability that factor i is
chosen is

πi = Prob
�

ci = min
j=1,...,m

c j

�

i = 1, . . . , m .

Assuming that the ε’s are identically, independently Gumbel distributed, the choice
probability becomes the (multinomial) logit. The fraction of tasks assigned to factor i
is:

πi =
e −αi /µ

∑

j e −α j /µ i = 1, . . . , m

The mean cost of production is2

V =−µ

�

log

�

∑

i

e −αi /µ

�

+γ

�

where γ is the Euler-Mascheroni constant (≈ 0.5772).

Calibration: Partial Equilibrium

We now reinterpret the factor cost coefficient αi to account for factor prices (pi )
and a reference equilibrium in which the fraction of all tasks assigned to factor i is θi

at reference factor prices p̄i = 1. Consider the following assignment:

αi = pi +µ(γ− log(θi )) .

When αi is defined this way, the unit cost of completing an individual task using
factor i is:

ci = pi −µ(log(θi )+ ε̃−γ),

1 In the continuous model we let n→∞.
2 Need to include the derivation for this. I can’t find my notes – integration by parts or some-
thing. The vaue of γ essentially corresponds to the term which can’t be obtained in closed form.
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and the share of tasks assigned to factor i is

πi =
θi e (1−pi )/µ

∑

j θ j e (1−pj )/µ
i = 1, . . . , m ,

and the production cost is:

V = 1−µ log

�

∑

i

θi e (1−pi )/µ

�

.

At reference prices p̄i = 1 ∀i , πi (p ) = θi , and V = 1 (for any value of µ).

Calibration: General Equilibrium

Input costs in the partial equilibrium model are denominated in units of factors (at
prices pi ) and the nominal values of the associated random costs. These play the role
of an “outside good” in the model formulation, portraying inputs coming from markets
which are not included explicitly in the model. If we are going to formulate a version
of the logit model which is useful for general equilibrium modeling, we need to have a
closed model. In simple terms, we need a model in which the only inputs to the pro-
duction process are factors i . How then do we denominate random variations in factor
cost? The iceberg model from international trade provides one solution.

Working with a discrete approximation, the linear programming representation anal-
ogous to the partial equilibrium model (1) is as follows:

min
1

n

n
∑

k=1

�

m
∑

i=1

αi xi k

�

subject to

y = 1+
µ

n

∑

i k

εi k xi k ⊥ py (2)

∑

i

xi k = y ∀k = {1, . . . , n} ⊥µk

xi k ≥ 0

In the discrete iceberg model random variations in factor cost appear on the right-
hand side of constraint (2). Random variations in cost of factor are denominated in
units of output from the very same sector, and for this reason gross output (y ) differs
from net output (1). Substitution choices on the input side affect aggregate productiv-
ity. 3 In the continuous model, the unit cost of sectoral output (a composite of many

3 This linear program can be solved iteratively. See notes insimulate.gms. When n is large,
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requisite tasks) may be denoted as v . Using v to denominate random variations in
production cost, the unit cost of completing a task using factor i is

ci = pi − v µ (log(θi )+ ε̃−γ)

The shares of tasks assigned to factor i are then:

πi =
θi e (1−pi /v )/µ

∑

j θ j e (1−pj /v )/µ
,

and the aggregate cost of production is:

V (p , v ) = v

�

1−µ log

�

∑

i

θi e (1−pi /v )/µ

��

,

which equals unity when pi = v = 1 ∀i .
Unlike the constant-elasticity-of-substitution (CES) cost function which can be cal-

culated explicitly from factor prices, the iceberg logit cost function is implicitly deter-
mined by the zero profit condition:

V (p , v ) = v ,

an equation which simplifies to:
∑

i

θi e (1−pi /v )/µ= 1 (3)

Provided that the unit cost function satisfies the zero profit condition, the choice
probability for factor i can be written as:

πi = θi e (1−pi /v )/µ

v must be computed simultaneously with factor demand which are determined in
part by the share of tasks which are assigned to each factor as well as by the number of
tasks which must be completed to produce a unit of net output. Overall productivity
depends on the extent to which primary factors are substituted against non-factor in-
puts. A change in the ratio of v to factor costs results in higher or lower productivity,
as part of sectoral output may be diverted as an intermediate production input. Intu-
itively, we can compute factor demands as:

xi =

�

v
∑

j pjπ j

�

πi = θi
e (1−pi /v )/µ

φ

in which

φ ≡
∑

j

(pj /v )π j =
∑

j

θ j

pj

v
e (1−pj /v )/µ

the LP can be slow (see caliblogit.gms), but the iterative solution takes only a couple of
iterations. We need to explain how this works.
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Comparative Statics

In the logit model, the cost function is defined implicitly by (3) which can be written:

f (p , v ) =
∑

i

θi e (1−pi /v )/µ= 1

Linearizing around a solution to this equation, considering perturbations of pi and
v which maintain feasibility, we set the total derivative of f () to zero:

d f =
∑

i

∂ f

∂ pi
dpi +

∂ f

∂ v
dv = 0. (4)

The requisite partial derivatives are:

∂ f

∂ pi
=−

θi /µ
v

e (1−pi /v )/µ=−
πi

µv
,

and

∂ f

∂ v
=
∑

i

θi pi /µ
v 2

e (1−pi /v )/µ=
φ

µv
,

Substituting into (4) provides Shephard’s lemma: the derivative of unit cost with
respect to factor price i equals the compensated demand for that factor:

dv

dpi
=
−∂ f /∂ pi

∂ f /∂ v
=

θi e (1−pi /v )/µ
∑

j θ j (pj /v )e (1−pj /v )/µ
=
πi

φ
= xi

The matrix of second order gradients of unit cost with respect to factor prices is the
Slutsky matrix. We can compute this directly by differentiation of xi with respect to pj .
The calculation involves a few partial derivatives:

∂ πi

∂ pj
=

�

− πi
µv i = j

0 i ̸= j
,

∂ πi

∂ v
=

pi

µv 2
πi ,

∂ φ

∂ pi
=
πi

v
+

pi

v

∂ πi

∂ pi
=
πi

v

�

1−
pi

µv

�

,

and (defining φ̂=
∑

i (pi /v )2πi ):

∂ φ

∂ v
=

1

v

�

φ̂/µ−φ
�

.

Slutsky terms may then be computed directly using the chain rule:
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dxi
dpj

�

�

�

i ̸= j
= d

dpj

πi
φ

= 1
φ

dπi
dpj
− πi
φ2

dφ
dpj

= 1
φ

�

∂ πi
∂ pj

+ ∂ πi
∂ v

dv
dpi

�

− πi
φ2

�

∂ φ
∂ pj

+ ∂ φ
∂ v

dv
dpj

�

= 1
φ

�

0+ pi
µv 2πi x j

�

− πi
φ2

�

π j

v

�

1− pj

µv

�

+ 1
v

�

φ̂
µ −φ

�

x j

�

Hence, off-diagonal terms in the Slutsky matrix are given by:

dxi

dpj

�

�

�

�

i ̸= j

=
1

µ

xi x j

v

�

pi +pj

v
−
φ̂

φ

�

and the diagonal term is:

dxi

dpi
=

xi

µv

�

xi

�

2pi

v
−
φ̂

φ

�

−1

�

The compensated own and cross-price elasticities of demand are then

εi j =
∂ xi

∂ pj

pi

x j
=











1
µ

�

θ̃i

�

2pi
v −

φ̂
φ

�

− pi
v

�

i = j

θ̃i
µ

�

pi +pj

v −
φ̂
φ

�

i ̸= j

where θ̃i = pi xi /v is the value share of good i at prices p .

Comparison with CES

We have produced a calibration of the logit demand function which matches up
with a constant elasticity of substitution model. The CES model is formulated as a
technology-constrained cost minimization problem:4

min
∑

j

pj x j

subject to

 

∑

j

θ j

�

x j

x̄ j

�ρ
!1/ρ

= 1

whereρ= 1−1/σ is defined by the Allen-Uzawa elasticity of substitution,σ. The cost
minimizing demand for factor i is:

4 Here I use the calibrated share form of the CES demand system, simplified to the case in which
reference prices are unity. Equations for the non-unitary case for the most part involve a global
replacement of pi by pi /p̄i .
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x j = x̄ j

�

v

pj

�σ

where

v =

 

∑

j

θ j p 1−σ
j

!1/(1−σ)

and θ j remains the benchmark value share of good j .
Off-diagonal terms in the Slutsky matrix are given by:

dxi

dpj

�

�

�

�

i ̸= j

=σ
xi x j

v

The Allen-Uzawa elasticity of substitution, σ, is a free parameter which describes
the compensated own and cross-price elasticities of demand:

εi j =
∂ xi

∂ pj

pi

x j
=

�

σ(θ̃i −1) i = j
σθ̃i i ̸= j

where θ̃i is the value share of good i at prices p .
Equivalence of the logit and CES demand systems at the benchmark point implies

µ=
1

σ

Boundary Solutions

One challenge with the CES function is that the boundaries of the price simplex lie
outside the domain of the cost function whenσ< 0. Whenσ> 0, the cost function can
be evaluated with one or more prices equal to zero, but demands for those goods whose
prices fall to zero are undefined. In the case of the iceberg logit model, the demand
function for commodity i can be evaluated when pi = 0, but the unit cost function
may be undefined.

Suppose that pi = 0 ∀i ∈ I0. The unit cost function v then satisfied the following
equation:

∑

j /∈I0

θ j e (1−pj /v )σ = 1− eσ
∑

i∈I0

θi

This equation has no real solution v when

σ>σmax =
1

log
�

∑

i∈I0
θi

�
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Table 1. Measured Inner Domain for a Symmetric Benchmark

Symmetric Value Shares: θ = (0.33, 0.33, 0.33)

Compensated Allen-Uzawa Morishima Shadow

σA = 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4
CES 73 100 18 2 100 100 100 100 100 100 56 29 100 100 67 29

LOGIT 13 18 13 2 24 24 13 13 51 35 13 2 51 35 13 2

Assymetric Value Shares: θ = (0.35, 0.6, 0.05)

Compensated Allen-Uzawa Morishima Shadow

σA = 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4
CES 84 100 49 13 100 100 100 100 95 100 75 27 100 100 95 58

LOGIT 25 27 16 7 20 20 20 11 33 35 18 7 27 33 18 11
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Figure 1. Isoquants –σ= 1

(a) Isoquant

(b) Demand Functions
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Figure 2. Isoquants –σ= 1/2

(a) Isoquant

(b) Demand Functions
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